Conecte-se conosco

Ciência

Dá para recuperar nervos danificados? Pesquisa no Brasil testa proteína que pode revolucionar tratamentos

Publicado

em

Estudos da USP e UFRJ investigam a proteína CDNF, capaz de proteger e regenerar nervos periféricos. Descoberta pode transformar o tratamento de doenças como diabetes, hanseníase, síndrome do Túnel do Carpo e Parkinson

Milhões de pessoas no mundo sofrem com danos nos nervos periféricos, causados por traumas, doenças como diabetes e hanseníase, ou condições como a síndrome do Túnel do Carpo e a síndrome de Guillain-Barré. Esses problemas provocam dores crônicas, formigamento, perda de força e, em muitos casos, incapacidades permanentes — porque, até hoje, a regeneração de nervos danificados era extremamente difícil.

Mas uma nova pesquisa conduzida por cientistas da Universidade de São Paulo (USP) e da Universidade Federal do Rio de Janeiro (UFRJ) traz esperança: a proteína CDNF (Fator Neurotrófico Dopamina Cerebral) pode acelerar e potencializar a recuperação dos nervos periféricos.

O que é a proteína CDNF?

Descoberta em 2007 por pesquisadores finlandeses, a CDNF pertence a uma nova família de fatores neurotróficos — moléculas que sustentam a sobrevivência, o desenvolvimento e o funcionamento dos neurônios. Inicialmente estudada por seu potencial no tratamento do Parkinson, a proteína atua especialmente sobre os neurônios produtores de dopamina, essenciais para o controle dos movimentos.

“A dopamina é um neurotransmissor ligado ao prazer, motivação e controle motor. Sua perda é central no Parkinson e em outras doenças neurodegenerativas”, explica a professora Débora Foguel, do Instituto de Bioquímica Médica Leopoldo de Meis, da UFRJ.

CDNF vai além do cérebro

Embora produzida no cérebro, a CDNF também é encontrada em outros órgãos, como o coração, onde estudos já mostraram seu papel na proteção contra infartos. A grande pergunta dos pesquisadores foi: será que ela também pode proteger e regenerar os nervos fora do sistema nervoso central?

Anúncio

A resposta, com base em experimentos da UFRJ, é sim.

“Pela primeira vez, demonstramos que a CDNF ajuda tanto a proteger quanto a regenerar células do sistema nervoso periférico, usando como modelo os gânglios da raiz dorsal”, afirma Débora Foguel.

Um novo mecanismo de ação

Antes, acreditava-se que a regeneração nervosa dependesse principalmente do Fator de Crescimento Nervoso (NGF). Agora, os pesquisadores descobriram que a CDNF atua por um receptor diferente, oferecendo um mecanismo complementar — e, em alguns casos, mais eficaz.

Ainda mais promissor: quando CDNF e NGF são usados juntos, o efeito sobre a recuperação dos neurônios é ainda mais potente.

Futuro dos tratamentos neurológicos

Essa descoberta abre caminho para o desenvolvimento de novas terapias para doenças que afetam os nervos periféricos, como:

  • Neuropatia diabética;
  • Complicações da hanseníase;
  • Lesões por compressão nervosa;
  • Doenças autoimunes do sistema nervoso.

“O CDNF tem grande potencial para proteger e regenerar células nervosas. Pode ser uma chave para tratamentos que antes pareciam impossíveis”, destaca Foguel.

Próximos passos

Anúncio

Os estudos seguem em fase pré-clínica, mas os resultados iniciais animam a comunidade científica. O próximo passo é testar a segurança e eficácia da proteína em modelos animais mais complexos, com vistas a futuros ensaios clínicos em humanos.


Com informações: The Conversation e pesquisas da UFRJ/USP / Olhar Digital

Ciência

Telescópio James Webb revela detalhes inéditos da Nebulosa Helix em nova imagem

Publicado

em

Por

Conhecida como o “Olho de Deus”, a nebulosa planetária foi capturada em infravermelho, mostrando os estágios finais de uma estrela e oferecendo um vislumbre do futuro do nosso Sol

Uma nova e espetacular imagem da Nebulosa Helix (NGC 7293), compartilhada em 20 de janeiro de 2026, capturada pelo Telescópio Espacial James Webb (JWST), está oferecendo aos astrônomos uma visão sem precedentes dos estertores da morte de uma estrela. Localizada a cerca de 655 anos-luz de distância, na constelação de Aquário, a Helix é uma das nebulosas planetárias mais próximas da Terra, o que a torna um laboratório natural ideal para estudar o fim do ciclo de vida estelar.

A imagem utiliza a tecnologia de infravermelho próximo do JWST para perfurar camadas de poeira que eram opacas para telescópios anteriores. O resultado é uma exibição vibrante de estruturas que se assemelham a um saca-rolhas ou a um olho humano — apelidos como “Olho de Deus” ou “Olho de Sauron” são frequentemente atribuídos à sua aparência dramática.

Reciclagem cósmica e a semeadura de elementos vitais

Apesar do nome, uma nebulosa planetária não tem relação direta com planetas. O termo é uma herança histórica dos primeiros astrônomos, que viam essas nuvens circulares através de telescópios rudimentares e as confundiam com discos planetários. Na realidade, trata-se de uma nuvem de gás e poeira expelida por uma estrela semelhante ao Sol que esgotou seu combustível nuclear.

À medida que a estrela se transforma em uma anã branca — um núcleo denso e extremamente quente visível no centro da nebulosa —, ela ioniza o gás ao seu redor. Esse processo faz com que o hidrogênio e o hélio brilhem em cores intensas. Mais importante ainda, esse evento espalha pelo espaço elementos fundamentais como carbono, oxigênio e nitrogênio. Esses materiais são os blocos de construção essenciais para a formação de futuras estrelas, planetas e, potencialmente, da vida.

A precisão do infravermelho revela a anatomia da destruição

A câmera infravermelha do James Webb permitiu observar milhares de filamentos dourados e alaranjados conhecidos como “nós cometários”. Essas estruturas se formam onde os ventos estelares velozes da anã branca colidem com as camadas de gás mais frias e lentas que foram liberadas anteriormente.

  • Região Central (Azul): O brilho azulado próximo à anã branca é resultado da intensa radiação ultravioleta inflamando o gás ionizado.

  • Periferia (Amarelo e Vermelho): Nas bordas mais distantes e frias, predomina o hidrogênio molecular e a poeira cósmica, representados em tons quentes.

  • Ciclo de Vida: A imagem captura o exato momento em que a matéria estelar é devolvida ao meio interestelar, funcionando como um grande centro de reciclagem cósmica.

O destino do Sol previsto pela Nebulosa Helix

Para os cientistas, observar a Nebulosa Helix é como olhar para um “espelho do futuro”. Estrelas com massa similar à do nosso Sol passam exatamente por esse processo de expansão para uma gigante vermelha antes de colapsarem em uma anã branca, ejetando suas camadas externas no processo.

Anúncio

Estima-se que o nosso próprio Sol seguirá um caminho idêntico em cerca de 5 bilhões de anos. Quando isso ocorrer, o sistema solar interno será consumido pela expansão solar, e o que restará será uma nebulosa brilhante, semelhante à Helix, marcando o fim da era do Sol como uma estrela da sequência principal. A imagem do JWST não é apenas uma obra de arte estética, mas um registro documental da evolução estelar que rege o universo.

Para imagens espaciais mais sublimes, confira nosso Arquivos da Foto Espacial da Semana.


Com informações: Live Science, NASA, ESA

 

Continue lendo

Ciência

Por que seu cérebro “apaga” o seu nariz da sua visão?

Publicado

em

Por

Você já parou para pensar que o seu nariz está sempre ali, bem no meio do seu rosto, mas você raramente o percebe? A ciência explica que isso não é uma falha ocular, mas sim uma sofisticada estratégia de sobrevivência do cérebro humano

De acordo com Michael Webster, cientista da visão da Universidade de Nevada, nós tecnicamente “vemos” o nariz o tempo todo. No entanto, o cérebro filtra essa informação através de um processo chamado adaptação sensorial. Como o nariz é uma característica imutável e constante, o sistema nervoso decide que processar essa imagem seria um desperdício de energia.

A Visão como uma Previsão, não uma Câmera

Ao contrário de uma câmera fotográfica, que registra cada detalhe de uma cena, o cérebro humano funciona como um artista que constrói um modelo útil da realidade.

  • Economia de Recursos: O cérebro foca em “surpresas” e mudanças no ambiente (como um predador se movendo ou um obstáculo no caminho) em vez de focar no que já é conhecido e seguro.

  • Filtro Biológico: Se tivéssemos consciência constante de tudo o que está em nosso campo de visão — como os vasos sanguíneos dentro dos nossos próprios olhos — ficaríamos sobrecarregados.

Truques da Mente: Pontos Cegos e Vasos Sanguíneos

O nariz não é a única coisa que o cérebro esconde de você para facilitar a sua vida:

  1. O Ponto Cego: Existe um local em cada olho onde o nervo óptico se conecta à retina. Ali, não há fotorreceptores. Em vez de você enxergar um “buraco” preto no mundo, o seu cérebro preenche o espaço com base no que está ao redor (por exemplo, se você olha para uma parede branca, ele assume que o ponto cego também é branco).

  2. Vasos Sanguíneos Oculares: Temos vasos sanguíneos na frente dos nossos fotorreceptores. Nós “olhamos através de galhos”, mas o cérebro cancela essas sombras. Você só as percebe durante exames oftalmológicos, quando uma luz em um ângulo diferente projeta sombras incomuns.

Como voltar a “ver” seu nariz agora mesmo?

Embora o cérebro tente ignorá-lo, você pode forçar a percepção consciente:

  • Feche um olho.

  • Foque em um ponto distante à sua frente.

  • Observe o borrão carnudo no canto inferior da sua visão.

  • Curiosidade: Agora que você leu este texto, provavelmente ficará “hiperconsciente” do seu nariz pelos próximos minutos até que seu cérebro decida arquivar essa informação novamente.

Resumo: Realidade vs. Modelo Útil

Recurso Visual O que o Cérebro faz Por que ele faz isso
Nariz Ignora / Apaga Evitar distração constante no centro da visão.
Ponto Cego Preenche com texturas Evitar a percepção de lacunas na visão periférica.
Vasos do Olho Cancela as sombras Garantir uma imagem limpa do mundo exterior.

“O modelo que vemos não nos diz necessariamente qual é a realidade do mundo, mas sim a informação que precisamos para sobreviver.” — Michael Webster.


Com informações: Live Science

 

Anúncio

Continue lendo

Ciência

“Esponja biológica”: Cientistas usam células-tronco para absorver a dor da artrite

Publicado

em

Por

Tratamento experimental SN101, testado em camundongos, utiliza neurônios sensoriais modificados para sequestrar sinais inflamatórios e até promover o reparo de cartilagens

Uma inovação biotecnológica pode representar o fim da dependência de opioides para pacientes com dor crônica. Pesquisadores da Escola de Medicina Johns Hopkins, liderados pelo Dr. Gabsang Lee, desenvolveram a terapia SN101, uma técnica que utiliza células-tronco pluripotentes humanas (hPSC) para criar neurônios “iscas”. O estudo, publicado em dezembro de 2025 no servidor bioRxiv, demonstra que esses neurônios, quando injetados em articulações com osteoartrite, funcionam como uma esponja, absorvendo gatilhos de dor e inflamação antes que cheguem ao cérebro.

Diferente dos tratamentos convencionais para doenças neurodegenerativas, que tentam substituir neurônios mortos, o SN101 introduz novos neurônios que coexistem com os originais. Eles agem como um escudo biológico, ligando-se a fatores inflamatórios no local da lesão. Surpreendentemente, além de aliviar a dor, o experimento mostrou que os neurônios modificados ajudaram no reparo ósseo e da cartilagem nos camundongos testados.

Como funciona a terapia SN101

A lógica por trás da “esponja para dor” é atacar a causa na origem, em vez de apenas bloquear a percepção no sistema nervoso central:

  • Ação Localizada: Neurônios derivados de células-tronco são injetados diretamente na articulação (como o joelho).

  • Sequestro de Sinais: Eles possuem receptores naturais que “capturam” as citocinas inflamatórias, impedindo que elas estimulem os neurônios sensoriais do próprio corpo.

  • Vantagem sobre Opioides: Enquanto os opioides atuam no cérebro e geram riscos de dependência e náuseas, o SN101 atua apenas onde a dor é gerada, com potencial de longa duração.

Desafios e Próximos Passos em 2026

Apesar dos resultados promissores, a comunidade científica mantém a cautela. Chuan-Ju Liu, professor da Universidade de Yale, destaca que a pesquisa ainda está em fase pré-clínica.

Desafio Detalhes
Diferença Biológica As articulações humanas são maiores, mais complexas e sofrem estresse mecânico por décadas, diferente dos camundongos.
Resposta Imune É preciso garantir que o corpo humano não rejeite os neurônios injetados (imunogenicidade).
Durabilidade Estudos de longo prazo são necessários para saber quanto tempo os neurônios injetados permanecem ativos e funcionais.
Toxicologia Testes formais de segurança devem preceder os primeiros ensaios clínicos com humanos.


Com informações: Live Science e bioRxiv

 

Anúncio

Continue lendo
Anúncio


Em alta

Verified by MonsterInsights